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Abstract In this paper, we have established an efficient

Legendre wavelet based approximation method to solve

film–pore diffusion model arising in engineering. Film–

pore diffusion model is widely used to determine study the

kinetics of adsorption systems. The use of Legendre

wavelet based approximation method is found to be accu-

rate, simple, fast, flexible, convenient, and computationally

attractive. It is shown that film–pore diffusion model sat-

isfactorily describe kinetics of methylene blue adsorption

onto the three low-cost adsorbents, Guava, teak and gul-

mohar plant leaf powders, used in this study.
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Introduction

In recent years, adsorption mechanism has been established

to be one of the highly efficient methods for removal of

colors, odors, and organic and inorganic pollutants emanat-

ing from various industrial processes. Large amounts of dyes

are used by textile industry and a significant portion of these

dyes are not consumed in the process and therefore let out

with the effluent. As the cost of commercial adsorbents is too

high, interest for using low-cost adsorbents for removal of

dyes from textile effluents is continuously growing. A recent

survey indicates that, in India, on an average fresh water

consumed and effluent generated per kg of finished textile

are 175 and 125 L, respectively (Ponnusami et al. 2010). The

presence of dyes in aqueous effluents is highly objectionable

as this affects the photosynthetic activity in receiving water

body by reducing/preventing light penetration. As the dyes

are recalcitrant in nature it is difficult to treat them in con-

ventional biological treatment plant (Ponnusami et al. 2007,

Ponnusami et al. 2009). Various researchers have worked on

biological degradation of dyes. But, very often, the meta-

bolic intermediates are found to be more toxic than the ori-

ginal compound (Cheung et al. 2001). Therefore,

identification of low-cost adsorbents is given more attention

by the researchers recently as commercial adsorbents like

activated carbon are too costly. Few recent studies investi-

gating application of low-cost adsorbents are: jackfruit peel

(Hameed 2009), pine apple stem (Hameed et al 2009),

phoenix tree leaves (Han et al. 2011), pomelo peel (Hameed

et al. 2008), shells of bittim (Aydin and Baysal 2006), orange

peel (Khaled et al. 2009), broad been peels (Hameed and El-

Khaiary 2008) etc.

In our previous reports, we have established the feasi-

bility and adsorption of MB onto three plant leaf powders

namely guava leaf powder (GLP), teak leaf powder (TLP),

and gulmohar leaf powder (GUL) (Ponnusami et al. 2010).

Film–pore diffusion model (FPDM) was employed suc-

cessfully to describe the kinetics of methylene blue

adsorption onto GLP, TLP, and GUL. Diffusion based

kinetic models are too complex and require rigorous

solution methods. For many of the diffusion models, pure

analytical solution is not possible. In our previous paper,

we had employed method of lines to solve film–pore dif-

fusion model and had shown that Film–pore model could

describe the kinetics of adsorption of MB onto GLP, TLP,

and GUL (Ponnusami et al. 2010). In this work, we have

proposed a wavelet based approximation method to film–

pore diffusion model.
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There is a growing interest in using various wavelets to

study problems, of greater computational complexity.

Among the wavelet transform families, the Haar and

Legendre wavelets deserve much attention. The basic idea

of Legendre wavelet method (LWM) is to convert the

PDEs to a system of algebraic equations by the operational

matrices of integral or derivative. The main goal is to show

how wavelets and multi-resolution analysis can be applied

for improving the method in terms of easy implement-

ability and achieving the rapidity of its convergence. Yin

et al. (2012) introduced the Laplace Legendre wavelets

method for solving Lane–Emden-type differential Equa-

tions. Recently, Hariharan and Kannan (2014) reviewed the

Haar wavelets for solving differential and integral equa-

tions arising in science and engineering. Wavelet method

for solving ODEs and PDEs is well documented in the

literature (Chen and Hsiao 1997; Hsiao 2007; Shi et al.

2010, Fazal-I-Haq et al. 2010; Wu 2009; Zhi and Cao

2012; Geng et al. 2011; Lepik 2005, 2007a, b; Hariharan

and Kannan (2010a, b, c); Hariharan (2010; Porter and

McKay 2001; Ho and McKay 1998; Yin et al 2012; Ha-

riharan et al. 2012).

Hariharan and Kannan (2010a, b, c) and Hariharan

(2010) had introduced the diffusion equation, convection–

diffusion equation, Reaction–diffusion equation, Nonlinear

parabolic equations, fractional Klein–Gordon equations,

Sine–Gordon equations and Fisher’s equation by the Haar

wavelet method.

In this work, we have applied a LWM for the numerical

solution of the film–pore diffusion model equation.

Materials and Methods

Detailed development of FPDM is described earlier by

McKay and co-workers (2001, 1998). Solution of FPDM

by method of lines is described in our previous paper

(Ponnusami et al. 2010). In the present paper, development

of LWM is described in detailed, and the results are

compared with our previous solution.

Legendre Wavelets Preliminaries (Yin et al. 2012)

Wavelets

Wavelets are the family of functions which are derived

from the family of scaling function f;j;k:k 2 Zg where:

;ðxÞ ¼
X

k

ak ;� ð2x� kÞ ð1Þ

For the continuous wavelets, the following equation can be

represented:

Wa;b xð Þ ¼ aj j
�1
2 W

x� b

a

� �
a; b 2 R; a 6¼ 0; ð2Þ

where a and b are dilation and translation parameters,

respectively, such that W(x) is a single wavelet function.

The discrete values are put for a and b in the initial form

of the continuous wavelets, i.e.,

a ¼ a
�j
0 ; a0 [ 1; b0 [ 1; ð3Þ

b ¼ kb0a
�j
0 ; j; k 2 Z: ð4Þ

Then, a family of discrete wavelets can be constructed as

follows:

Wj;k ¼ ja0j
1
2W 2 jx� k
� �

; ð5Þ

So, Wj,k(x) constitutes an orthonormal basis in L2 (R),

where W(x) is a single function.

Legendre Wavelets

The Legendre wavelets are defined by

WnmðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

2
2

k
2

r
Lm 2kt � n

_
� �

; for
n
_

� 1

2k
� t� n

_

þ 1

2k

0; otherwise

8
><

>:
;

ð6Þ

where m = 0, 1, 2, …, M - 1 and n = 0, 1, 2, …, 2k-1.

The coefficient
ffiffiffiffiffiffiffiffiffiffiffi
mþ 1

2

q
is for orthonormality, then, the

wavelets Wk,m (x) form an orthonormal basis for L2[0,1]. In

the above formulation of Legendre wavelets, the Legendre

polynomials are in the following way:

p0 ¼ 1;

p1 ¼ x;

pmþ1ðxÞ ¼
2mþ 1

mþ 1
xpmðxÞ �

m

mþ 1
pm�1ðxÞ: ð7Þ

and {pm?1(x)} are the orthogonal functions of order m,

which is named the well-known shifted Legendre polyno-

mials on the interval [0,1]. Note that, in the general form of

Legendre wavelets, the dilation parameter is a = 2-k and

the translation parameter is b = n 2k.

Block-Pulse Functions (BPFs) (Yin et al. 2012)

The block-pulse functions form a complete set of orthog-

onal functions which defined on the interval [0, b) by

bi tð Þ ¼ 1;
i� 1

m
b � t \

i

m
b;

0; elsewhere

(
ð8Þ
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for i = 1, 2,…, m. It is also known that for any absolutely

integrable function f(t) on [0,b) can be expanded in block-

pulse functions:

f tð Þ ffi nT Bm tð Þ ð9Þ

nT ¼ f1; f2; . . .; fm½ �;Bm tð Þ ¼ b1 tð Þ; b2 tð Þ; . . .; bm tð Þ½ � ð10Þ

where fi are the coefficients of the block-pulse function,

given by

fi ¼
m

b

Zb

0

f tð Þbi tð Þdt ð11Þ

Remark 1 Let A and B are two matrices of m x m, then

A� B ¼ aij � bij

� �
mm
:

Lemma 1 Assuming f(t) and g(t) are two absolutely

integrable functions, which can be expanded in block-pulse

function as f(t) = FB(t) and g(t) = GB(t), respectively,

then we have

f ðtÞgðtÞ ¼ FBðtÞBTðtÞGT ¼ HBðtÞ; ð12Þ

where H = F � G.

Approximating the Nonlinear Term (Yin et al. 2012)

The Legendre wavelets can be expanded into m-set of

block-pulse Functions as

W tð Þ ¼ ;m�mBmðtÞ ð13Þ

Taking the collocation points as following

ti ¼
i� 1=2

2k�1M
; i ¼ 1; 2; . . .; 2ðk�1ÞM ð14Þ

The m-square Legendre matrix ;m�m is defined as

;mm ffi W t1ð ÞW t2ð Þ. . .Wðt2k�1MÞ½ � ð15Þ

The operational matrix of product of Legendre wavelets

can be obtained by using the properties of BPFs, let f(x, t)

and g(x, t) are two absolutely integrable functions, which

can be expanded by Legendre wavelets as f ðx; tÞ ¼
WTðxÞFWðtÞ and g x; tð Þ ¼ WT xð ÞGW tð Þ, respectively. Then

f x; tð Þ ¼ WT xð ÞFW tð Þ ¼ BT xð Þ;T
mmF;mmB tð Þ; ð16Þ

g x; tð Þ ¼ WT xð ÞGW tð Þ ¼ BT xð Þ;T
mmG;mmB tð Þ; ð17Þ

and

Fb ¼ ;T
mmF;mm;Gb ¼ ;T

mmG;mm;Hb ¼ Fb � Gb:

Then,

f x; tð Þg x; tð Þ ¼ BT HbB tð Þ;

¼ BT xð Þ;T
mminv ;T

mm

� �
Hbinv inv ;T

mm

� �
Hbinv ;mmð Þ

� �
;mmB tð Þ

¼ WT xð ÞHW tð Þ ð18Þ

where H ¼ invð;T
m mÞHbinvðð;m mÞÞ

Function Approximation (Yin et al. 2012)

A given function f(x) with the domain [0,1] can be

approximated by:

f ðxÞ ¼ R1k¼1R
1
m¼0ck;mWk;m xð Þ ¼ CT :WðxÞ: ð19Þ

Here C and W are the matrices of size (2j-1 M 9 1).

C¼ c1;0;c1;1;...c1;M�1;c2;0;c2;1;...c2;M�1;...c
j�1
2;1 ;...c

j�1
2;M�1

h iT

ð20Þ
W xð Þ ¼ ½W1;0;W1;1;W2;0;W2;1; . . .W2;M�1; . . .W2j�1;M�1�

ð21Þ

Method of Solution

Consider the equation (Hariharan et al. 2012)

_�Ci Z; sð Þ ¼ A �Cið Þ Ci

00
þ 1

Z

� �
Ci

0
	 


ð22Þ

Ciðz; 0Þ ¼ e�z

Ciðz; 1Þ ¼ e�z�0:09

Cið0; sÞ ¼ e�0:09s

Cið1; sÞ ¼ e�1�0:09s

9
>>=

>>;
ð23Þ

We solve Eq. (22) by applying the LWM

Ci

00
ðz; sÞ ¼ CT PsWðz; sÞ þ Ci

00
ðz; 0Þ ð24Þ

Ci

0
ðz; sÞ ¼ CT PsPz Wðz; sÞ � PzWð1; sÞ½ � þ g1ðz; sÞ ð25Þ

Ci

:

ðz; sÞ ¼ CT P2
z Wðz; sÞ � zWð1; sÞ½ � þ g2ðz; sÞ ð26Þ

Ciðz; sÞ ¼ CT PsP
2
z Wðz; sÞ � zWð1; sÞ½ � þ Ciðz; 0Þ

� Cið0; 0Þ
þ z Cið1; sÞ � Cið1; 0Þ þ Cið0; 0Þ � Cið0; sÞ
� �

þ Cið0; sÞ
ð27Þ

in which

g1ðz; sÞ ¼ C
:

i
ðz; 0Þ � Cið1; 0Þ � Cið0; sÞ þ Cið1; sÞ þ 1

and,

g2ðz; sÞ ¼ z �Cið1; sÞ � Ci
0 ð0; sÞ

h i
þ Ci

0 ð0; sÞ
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Substitute the Eqs. (24)–(26) into Eq. (22), we get

CT P2
z Wðz; sÞ � zWð1; sÞ½ � þ g2ðz; sÞ

¼ AðCiÞ CTPsWðz; sÞ þ Ci

00
ðz; 0Þ

� �h

þ 1

z
CT PsPz Wðz; sÞ � PzWð1; sÞ½ � þ g1ðz; sÞ
� �


ð28Þ

From formula (28) the wavelet coefficients CT can be

calculated successfully

Here A Ci

� �
are constants (linear) and [ = 0.5, q = 500.

Table 1 gives a comparison of Legendre wavelet (LW)

solutions and method of lines. It is evident that LW solu-

tions are better than that of the method of lines. Value of

absolute error decreased when k was increased. The results

show that combining with wavelet matrix, the method in

this paper can be effectively used in numerical calculus for

constant coefficient differential equations, and that the

method is feasible. We can see that the numerical solutions

are in good agreement with exact solution. The power of

the manageable method is thus confirmed.

All the numerical experiments presented in this section were

computed in double precision with some MATLAB codes on a

personal computer System with Processor Intel(R) Core(TM) 2

Duo CPU T5470 at 1.60 GHz (2CPUs) and 1 GB RAM.

Conclusion

In the present paper, FPDM model equations had been

solved by the LWM It was found that the model could

predict the concentration decay curve for all adsorption of

methylene blue onto TLP, GUL, and GLP excellently with

a small deviation during initial period. In comparison with

existing numerical schemes used to solve the nonlinear

parabolic equations, the scheme in this paper is an

improvement over other methods in terms of accuracy. It is

worth mentioning that LW solution provides excellent

results even for small values of k. For larger values of k, we

can obtain the results closer to the real values.

Acknowledgments This work was supported by the Naval Research

Board (NRB) (Project No.: DNRD/05/4003/NRB/322), Government

of India. The authors are very grateful to the referees for their valu-

able suggestions. Our hearty thanks are due to Prof. R. Sethuraman,

Vice-Chancellor, SASTRA University, Dr. S. Vaidhyasubramaniam,

Dean/Planning and development and Dr.S. Swaminathan, Dean/

Sponsored research for their kind encouragement and for providing

good research environment.

References
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